Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A Kinetic Model of Nonenzymatic RNA Polymerization by Cytidine-5'-phosphoro-2-aminoimidazolide.

Biochemistry 2017 October 32
The nonenzymatic polymerization of RNA may have enabled copying of functional sequences during the origin of life. Recent progress utilizing 5'-phosphoro-2-aminoimidazole activation has reinvigorated the possibility of using nonenzymatic RNA polymerization for copying arbitrary sequences. However, the reasons why 2-aminoimidazole (AI) is a superior activation group remain unclear. Here we report that the predominant mechanism of polymerization using cytidine-5'-phosphoro-2-aminoimidazolide (Cp*) involves a 2-aminoimidazolium-bridged dinucleotide (Cp*pC) intermediate. To explore the role of this intermediate, we first identify and quantify four reactions involving the synthesis and breakdown of Cp*pC that occur in the absence of the primer-template duplex. We then analyze the dependence of the rate of polymerization on the concentration of the Cp*pC intermediate in the presence and absence of the competitive inhibitor Cp. We also show that the contribution of the monomer Cp* to the polymerization rate is negligible under our primer extension conditions. Finally, we use the experimentally determined rate constants of these reactions to develop a kinetic model that helps explain the changing rate of nonenzymatic RNA polymerization over time. Our model accounts for the concentration of Cp*pC formed by Cp* under primer extension conditions. The model does not completely account for the decline in polymerization rate observed over long times, which indicates that additional important inhibitory processes have not yet been identified. Our results suggest that the superiority of 2-aminoimidazole over the traditional 2-methylimidazole activation is mostly due to the higher level of accumulation of the imidazolium-bridged intermediate under primer extension conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app