Add like
Add dislike
Add to saved papers

Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin.

A wearable and flexible pressure sensor is essential to the realization of personalized medicine through continuously monitoring an individual's state of health and also the development of a highly intelligent robot. A flexible, wearable pressure sensor is fabricated based on novel single-wall carbon nanotube /tissue paper through a low-cost and scalable approach. The flexible, wearable sensor showed superior performance with concurrence of several merits, including high sensitivity for a broad pressure range and an ultralow energy consumption level of 10-6 W. Benefited from the excellent performance and the ultraconformal contact of the sensor with an uneven surface, vital human physiological signals (such as radial arterial pulse and muscle activity at various positions) can be monitored in real time and in situ. In addition, the pressure sensors could also be integrated onto robots as the artificial skin that could sense the force/pressure and also the distribution of force/pressure on the artificial skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app