Add like
Add dislike
Add to saved papers

Transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox.

Planta 2018 Februrary
MAIN CONCLUSION: Presented here is the first Echinochloa colona leaf transcriptome. Analysis of gene expression before and after herbicide treatment reveals that E. colona mounts a stress response upon exposure to herbicide. Herbicides are the most frequently used means of controlling weeds. For many herbicides, the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. In this study, changes in gene expression in response to herbicide exposure in imazamox-sensitive (S) and- resistant (R) junglerice (Echinochloa colona L.) biotypes was examined. As no reference genome is available for this weed, a reference leaf transcriptome was generated. Messenger RNA was isolated from imazamox-treated- and untreated R and S plants and the resulting cDNA libraries were sequenced on an Illumina HiSeq2000. The transcriptome was assembled, annotated, and differential gene expression analysis was performed to identify transcripts that were upregulated or downregulated in response to herbicide exposure for both biotypes. Differentially expressed transcripts included transcription factors, protein-modifying enzymes, and enzymes involved in metabolism and signaling. A literature search revealed that members of the families represented in this analysis were known to be involved in abiotic stress response in other plants, suggesting that imazamox exposure induced a stress response. A time course study examining a subset of transcripts showed that expression peaked within 4-12 h and then returned to untreated levels within 48 h of exposure. Testing of plants from two additional biotypes showed a similar change in gene expression 4 h after herbicide exposure compared to the resistant and sensitive biotypes. This study shows that within 48 h junglerice mounts a stress response to imazamox exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app