Add like
Add dislike
Add to saved papers

Segmentation of multicolor fluorescence in situ hybridization images using an improved fuzzy C-means clustering algorithm by incorporating both spatial and spectral information.

Multicolor fluorescence in situ hybridization (M-FISH) is a multichannel imaging technique for rapid detection of chromosomal abnormalities. It is a critical and challenging step to segment chromosomes from M-FISH images toward better chromosome classification. Recently, several fuzzy C-means (FCM) clustering-based methods have been proposed for M-FISH image segmentation or classification, e.g., adaptive fuzzy C-means (AFCM) and improved AFCM (IAFCM), but most of these methods used only one channel imaging information with limited accuracy. To improve the segmentation for better accuracy and more robustness, we proposed an FCM clustering-based method, denoted by spatial- and spectral-FCM. Our method has the following advantages: (1) it is able to exploit information from neighboring pixels (spatial information) to reduce the noise and (2) it can incorporate pixel information across different channels simultaneously (spectral information) into the model. We evaluated the performance of our method by comparing with other FCM-based methods in terms of both accuracy and false-positive detection rate on synthetic, hybrid, and real images. The comparisons on 36 M-FISH images have shown that our proposed method results in higher segmentation accuracy ([Formula: see text]) and a lower false-positive ratio ([Formula: see text]) than conventional FCM (accuracy: [Formula: see text], and false-positive ratio: [Formula: see text]) and the IAFCM (accuracy: [Formula: see text] and false-positive ratio: [Formula: see text]) methods by incorporating both spatial and spectral information from M-FISH images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app