Journal Article
Review
Add like
Add dislike
Add to saved papers

Cushioning the cartilage: a canonical Wnt restricting matter.

Wnt signalling pathways have key roles in joint development, homeostasis and disease, particularly in osteoarthritis. New data is starting to reveal the importance of tightly regulating canonical Wnt signalling pathway activation to maintain homeostasis and health in articular cartilage. In addition to the presence of different Wnt antagonists that limit pathway activation in articular cartilage, the reciprocal crosstalk between the canonical and non-canonical cascades and competitive antagonism between different Wnt ligands seem to be critical in restraining excessive Wnt pathway activation. Changes in transcriptional complex assembly upon Wnt pathway activation, epigenetic modulation of target gene transcription, in particular through histone modifications, and complex interactions between the Wnt signalling pathway and other signalling pathways, are also instrumental in adjusting Wnt signalling. In this Review, the cellular and molecular mechanisms involved in fine-tuning canonical Wnt signalling in the joint are updated, with a focus on the articular cartilage. The interventions for preventing or treating osteoarthritis are also discussed, which should aim to limit disease-associated excessive canonical Wnt activity to avoid joint damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app