Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcriptomic Analysis of Octanoic Acid Response in Drosophila sechellia Using RNA-Sequencing.

The dietary specialist fruit fly Drosophila sechellia has evolved to specialize on the toxic fruit of its host plant Morinda citrifolia Toxicity of Morinda fruit is primarily due to high levels of octanoic acid (OA). Using RNA interference (RNAi), prior work found that knockdown of Osiris family genes Osiris 6 ( Osi6 ), Osi7 , and Osi8 led to increased susceptibility to OA in adult D. melanogaster flies, likely representing genes underlying a Quantitative Trait Locus (QTL) for OA resistance in D. sechellia While genes in this major effect locus are beginning to be revealed, prior work has shown at least five regions of the genome contribute to OA resistance. Here, we identify new candidate OA resistance genes by performing differential gene expression analysis using RNA-sequencing (RNA-seq) on control and OA-exposed D. sechellia flies. We found 104 significantly differentially expressed genes with annotated orthologs in D. melanogaster , including six Osiris gene family members, consistent with previous functional studies and gene expression analyses. Gene ontology (GO) term enrichment showed significant enrichment for cuticle development in upregulated genes and significant enrichment of immune and defense responses in downregulated genes, suggesting important aspects of the physiology of D. sechellia that may play a role in OA resistance. In addition, we identified five candidate OA resistance genes that potentially underlie QTL peaks outside of the major effect region, representing promising new candidate genes for future functional studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app