JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Epicutaneous Tolerance Induction to a Bystander Antigen Abrogates Colitis and Ileitis in Mice.

BACKGROUND: Although inflammatory bowel disease (IBD) is a failure in maintaining tolerance to the intestinal microbiota, few studies have investigated the use of immunologic tolerance as a treatment approach for IBD. We hypothesized that induction of immune tolerance at a distal site could suppress intestinal inflammation through a process of bystander regulation.

METHODS: Epicutaneous tolerance was induced by topical application of ovalbumin (OVA) using a Viaskin patch for 48 hours. In some experiments, a single feed of ovalbumin was used to drive epicutaneous tolerance-induced regulatory T cells (Tregs) to the intestine. The mechanism of tolerance induction was tested using neutralizing antibodies against TGF-β, IL-10, and Treg depletion using Foxp3-DTR mice. The capacity of skin-draining Tregs, or epicutaneous tolerance, to prevent or treat experimental IBD was tested using T-cell transfer colitis, dextran sodium sulfate (DSS) colitis, and ileitis in SAMP-YITFc mice. Weight loss, colonic inflammatory cytokines and histology were assessed.

RESULTS: Epicutaneous exposure to ovalbumin induced systemic immune tolerance by a TGF-β-dependent, but IL-10 and iFoxp3 Treg-independent mechanism. Skin draining Tregs suppressed the development of colitis. Epicutaneous tolerance to a model antigen prevented intestinal inflammation in the dextran sodium sulfate and SAMP-YITFc models and importantly could halt disease in mice already experiencing weight loss in the T-cell transfer model of colitis. This was accompanied by a significant accumulation of LAP and Foxp3 Tregs in the colon.

CONCLUSIONS: This is the first demonstration that epicutaneous tolerance to a model antigen can lead to bystander suppression of inflammation and prevention of disease progression in preclinical models of IBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app