JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water.

ACS Nano 2017 November 29
Understanding of structural, electrical, and gravimetric peculiarities of water vapor interaction with ion-intercalated MXenes led to design of a multimodal humidity sensor. Neutron scattering coupled to molecular dynamics and ab initio calculations showed that a small amount of hydration results in a significant increase in the spacing between MXene layers in the presence of K and Mg intercalants between the layers. Films of K- and Mg-intercalated MXenes exhibited relative humidity (RH) detection thresholds of ∼0.8% RH and showed monotonic RH response in the 0-85% RH range. We found that MXene gravimetric response to water is 10 times faster than their electrical response, suggesting that H2 O-induced swelling/contraction of channels between MXene sheets results in trapping of H2 O molecules that act as charge-depleting dopants. The results demonstrate the use of MXenes as humidity sensors and infer potential impact of water on structural and electrical performance of MXene-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app