Add like
Add dislike
Add to saved papers

Rapid determination of the emerging contaminant oxypurinol in surface water using solid phase extraction followed by ultra high-performance liquid chromatography with fluorescence detection.

A method has been developed for the trace analysis of oxypurinol that is considered as an active pharmaceutical ingredient and an emerging environmental contaminant. The method achieved the identification and quantification of oxypurinol in surface water samples utilizing solid phase extraction and ultra high-performance liquid chromatography with diode array and fluorescence detection for the first time. Four principal parameters of solid phase extraction were optimized to obtain maximum extraction efficiency. Under the isocratic elution of methanol/water (5:95, v/v) and the excitation/emission wavelength of 254/359 nm, a rapid determination was achieved in 2.0 min with good linearity of 1.05-351 μg/L (coefficient of determination above 0.9998). The limit of detection and method detection limit were 0.210 μg/L and 1.34 ng/L, respectively. Precision of the method was evaluated and a relative standard deviation value of 3.3% was obtained for analyses of six replicate spiking blank samples (200 mL, 176 ng/L) according to the overall proposed procedure. The method showed a great anti-interference ability and average spiked recoveries of oxypurinol in five surface water samples were in the range of 94.5-111%. The ability of the method to detect and correctly identify oxypurinol can significantly promote investigation on the occurrence of oxypurinol in water and its potential (eco-)toxicological effects. Graphical abstract Quantification of the emerging contaminant oxypurinol in s urface water using SPE/UHPLC-FLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app