Add like
Add dislike
Add to saved papers

Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers.

Nanoscale 2017 October 27
In the conventional non-invasive cancer treatments, such as photodynamic therapy (PDT) and photothermal therapy (PTT), light irradiation is precisely focused on tumors to induce apoptosis via the generation of reactive oxygen species (ROS) or localized heating. However, overconsumption of oxygen and restricted diffusion distance of ROS limit the therapeutic effects on hypoxic tumors. Herein, we developed a platform for the rapid uptake of multifunctionalized Au@Pt nanoparticles (NPs) by mitochondria in cancer cells. The mesoporous Au@Pt nanoparticles were labeled with a cell-targeting ligand (folic acid), a mitochondria-targeting group (triphenylphosphine (TPP)), and a photosensitizer (Ce6). This led to significant improvement of the PDT efficacy due to an enhanced cellular uptake, an effective mitochondrial ROS burst, and a rapid intelligent release of oxygen. Moreover, Au@Pt NPs can convert laser radiation into heat, resulting in thermally induced cell damage. This nanosystem could be used as a dual-mode phototherapeutic agent for enhanced cancer therapy and molecular targets associated with disease progression. We achieved a mitochondria-targeted multifunctional therapy strategy (a combination of PDT and PTT) to substantially improve the therapeutic efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app