Add like
Add dislike
Add to saved papers

Cloning and expression of Malabar grouper (Epinephelus malabaricus) ADAR1 gene in response to immune stimulants and nervous necrosis virus.

ADARs are RNA editing catalysts that bind double-stranded RNA and convert adenosine to inosine, a process that can lead to destabilization of dsRNA structures and suppression of mRNA translation. In mammals, ADAR1 genes are involved in various cellular pathways, including interferon (IFN)-mediated response. However, the function of fish ADAR1 remains unclear. We report here the cloning of ADAR1 in Malabar grouper (Epinephelus malabaricus) (MgADAR1) and its response to various immune stimulants. The MgADAR1 cDNA is 5371-bp long, consisting of an open reading frame encoding a putative protein of 1381 amino acids, a 235-nt 5'-terminal untranslated region (UTR), and a 990-nt 3'-UTR. The deduced amino acid sequence exhibits signature features of a chitin synthesis regulation domain, two Z-DNA-binding domains (Z alpha), three dsRNA binding motifs (DSRM) and one tRNA-specific and dsRNA adenosine deaminase domain (ADEAMc). MgADAR1 mRNA expressed ubiquitously in tissues of healthy Malabar grouper, with elevated levels in the brain, gills and eyes. In response to poly (I: C), the MgADAR1 mRNA level was significantly up-regulated in the brain and spleen, but not head kidney. Upon nervous necrosis virus (NNV) infection the level of MgADAR1 increased in the brain, whereas Mx increased in the brain, spleen and head kidney. Induction of MgADAR1 by poly (I: C) and NNV was also observed in vitro. Additionally, the expression of MgADAR1 was upregulated by recombinant grouper IFN in grouper cells. These data indicate an intricate interplay between ADAR1 and NNV infection in grouper as MgADAR1 might be regulated in a tissue-specific manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app