Add like
Add dislike
Add to saved papers

Two goitrogenic 1,3-oxazolidine-2-thione derivatives from Brassicales taxa: Challenging identification, occurrence and immunomodulatory effects.

1,3-Oxazolidine-2-thione derivatives are glucosinolate-related food constituents known to impart (thyreo)toxic properties to some cruciferous vegetables. In this work, 5,5-dimethyl-1,3-oxazolidine-2-thione and (-)-(R)-5-phenyl-1,3-oxazolidine-2-thione, known goitrogens, were isolated from Draba lasiocarpa Rochel (Brassicaceae) and Reseda luteola L. (Resedaceae), respectively, and were fully spectrally characterized. Subsequently, the occurrence of the two 1,3-oxazolidine-2-thiones was verified in six additional taxa out of in total 78 screened Serbian Brassicales taxa. The stereochemistry of 5-phenyl-1,3-oxazolidine-2-thione was inferred from nuclear magnetic resonance experiments with a chiral lanthanide-shift reagent, employed in this work for the first time for this type of compounds. Unexpectedly, during gas chromatography, 5-phenyl-1,3-oxazolidine-2-thione underwent an unreported thermal core isomerization (1,3-oxazolidine-2-thione to 1,3-thiazolidine-2-one). These goitrogenic volatile glucosinolate products were tested for their effect on rat macrophage viability (three assays) and nitric oxide production. It was shown that the compounds displayed different levels of cytotoxicity. All tested compounds caused a significant lactate dehydrogenase leakage, but only (R)-5-phenyl-1,3-oxazolidine-2-thione statistically significantly reduced macrophage mitochondrial activity, whereas the racemic 5-phenyl-1,3-oxazolidine-2-thione and 5,5-dimethyl-1,3-oxazolidine-2-thione had little or no effect. Again only (R)-5-phenyl-1,3-oxazolidine-2-thione exerted nitric oxide production-inhibiting properties, suggesting the higher immunomodulatory potential of this enantiomer compared with its antipode and racemic mixture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app