Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Pituitary adenylate cyclase activating polypeptide induces long-term, transcription-dependent plasticity and remodeling at autonomic synapses.

Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide, widely expressed in the nervous system (Vaudry et al., 2009; Starr and Margiotta, 2016). At neuronal synapses where transmission is mediated by nicotinic acetylcholine receptors (nAChRs) transient PACAP exposure increases the frequency and amplitude (FS and AS ) of spontaneous excitatory postsynaptic currents (sEPSCs) within minutes. This short-term (ST) plasticity requires high-affinity PACAP receptor (PAC1 R) signaling via adenylate cyclase (AC), cyclic AMP (cAMP), Protein kinase A (PKA) and obligatory nAChR-dependent stimulation of nitric oxide (NO) synthesis to retrogradely increase presynaptic ACh release (Pugh et al., 2010; Jayakar et al., 2014). Remarkably, synaptic changes persist 48h after transient PACAP exposure, featuring a similar increase in FS and an even larger increase in AS . Pharmacological studies reveal that this long-term (LT) plasticity requires PACAP/PAC1 R signaling via AC and cAMP, but unlike ST plasticity, Phospholipase-C and new gene transcription are also necessary, whereas PKA, nAChR, impulse and NO synthase (NOS1) activities are dispensable. In accord with the increases in FS and AS characterizing LT plasticity, miniature EPSC (mEPSC) frequency, ACh release (quantal content), and mEPSC amplitude (quantal size) all increased in parallel. Consistent with these functional changes, imaging studies reveal that LT, but not ST, PACAP-induced plasticity is accompanied by increases in presynaptic terminal size, postsynaptic nAChR cluster size and density, and the size and density of co-localized pre- and post-synpatic sites. Thus PACAP/PAC1 R signaling induces mechanistically distinct forms of synaptic plasticity, with a ST form arising from acute, membrane-delimited processes, and a LT form arising from transcription-dependent alterations in the function and structural arrangement of pre- and post-synaptic components.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app