Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DFT and AFIR Study on the Mechanism and the Origin of Enantioselectivity in Iron-Catalyzed Cross-Coupling Reactions.

The mechanism of the full catalytic cycle for Fe-chiral-bisphosphine-catalyzed cross-coupling reaction between alkyl halides and Grignard reagents (Nakamura and co-workers, J. Am. Chem. Soc. 2015, 137, 7128) was rationalized by using density functional theory (DFT) and multicomponent artificial force-induced reaction (MC-AFIR) methods. The computed mechanism consists of (a) C-Cl activation, (b) transmetalation, (c) C-Fe bond formation, and (d) C-C bond formation through reductive elimination. Our survey on the prereactant complexes suggested that formation of FeII (BenzP*)Ph2 and FeI (BenzP*)Ph complexes are thermodynamically feasible. FeI (BenzP*)Cl complex is the active intermediate for C-Cl activation. FeII (BenzP*)Ph2 complex can be formed if the concentration of Grignard reagent is high. However, it leads to biphenyl (byproduct) instead of the cross-coupling product. This explains why slow addition of Grignard reagent is critical for the cross-coupling reaction. The MC-AFIR method was used for systematic determination of transition states for C-Fe bond formation and C-C bond formation starting from the key intermediate FeII (BenzP*)PhCl. According to our detailed analysis, C-C bond formation is the selectivity-determining step. The computed enantiomeric ratio of 95:5 is in good agreement with the experimental ratio (90:10). Energy decomposition analysis suggested that the origin of the enantioselectivity is the deformation of Ph-ligand in Fe-complex, which is induced by the bulky tert-butyl group of BenzP* ligand. Our study provides important mechanistic insights for the cross-coupling reaction between alkyl halides and Grignard reagents and guides the design of efficient Fe-based catalysts for cross-coupling reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app