Add like
Add dislike
Add to saved papers

Evaluation of the aqueous phototransformation routes of phenyl ethyl azolic fungicides by liquid chromatography accurate mass spectrometry.

Similarities and differences among the phototransformation routes of four azolic fungicides (diniconazole, DIN, imazalil, IMA; penconazole, PEN; and propiconazole, PRO) in surface water aliquots are investigated. Selected compounds share a common chemical structure consisting on dichlorophenyl and azolic rings connected through an ethylene bridge, which is substituted with different functionalities. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was employed as analytical technique to follow the time-course of precursor fungicides and to detect and to identify their photo-transformation products (TPs). Under solar light, the substituents linked to the ethylene chain controlled the stability of the fungicides. Whilst PEN and PRO remained stable, DIN and IMA showed moderate reactivities, with half-lives (t1/2 ) of 5.1 and 33.5h, respectively. When exposed to UV (254nm) radiation, all compounds were effectively degraded with t1/2 in the range from seconds to a few minutes. Dechlorination followed by intramolecular cyclization, between phenyl and azolic rings, was identified as a common phototransformation route under UV irradiation. Depending on the length and the kind of the functionalities attached to the ethylene bridge, additional cyclization reactions are also possible. In-silico toxicity predictions pointed out to dechlorinated tricyclic TPs as the most concerning ones, with predicted lethal concentrations (LC50 ) in the same range as the precursor fungicides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app