Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DMSO: A Mixed-Competitive Inhibitor of Human Acetylcholinesterase.

ACS Chemical Neuroscience 2017 December 21
Dimethyl sulfoxide (DMSO) is the most common organic solvent used in biochemical and cellular assays during drug discovery programs. Despite its wide use, the effect of DMSO on several enzyme classes, which are crucial targets of the new therapeutic agents, are still unexplored. Here, we report the detailed biochemical analysis of the effects of DMSO on the human acetylcholine-degrading enzyme, acetylcholinesterase (AChE), the primary target of current Alzheimer's therapeutics. Our analysis showed that DMSO is a considerably potent and highly selective irreversible mixed-competitive inhibitor of human AChE with IC50 values in the lower millimolar range, corresponding to 0.88% to 2.6% DMSO (v/v). Most importantly, 1-4% (v/v) DMSO, the commonly used experimental concentrations, showed ∼37-80% inhibition of human AChE activity. We believe that our results will assist in developing stringent protocols and help in the better interpretation of experimental outcomes during screening and biological evaluation of new drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app