Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability.

Cardiovascular Research 2018 Februrary 2
AIMS: In patients with cardiovascular disease, epicardial adipose tissue (EAT) is characterized by insulin resistance, high pro-inflammatory chemokines, and low differentiation ability. As dapagliflozin reduces body fat and cardiovascular events in diabetic patients, we would like to know its effect on EAT and subcutaneous adipose tissue (SAT).

METHODS AND RESULTS: Adipose samples were obtained from 52 patients undergoing heart surgery. Sodium-glucose cotransporter 2 (SGLT2) expression was determined by real-time polymerase chain reaction (n = 20), western blot, and immunohistochemistry. Fat explants (n = 21) were treated with dapagliflozin and/or insulin and glucose transporters expression measured. Glucose, free fatty acid, and adipokine levels (by array) were measured in the EAT secretomes, which were then tested on human coronary endothelial cells using wound healing assays. Glucose uptake was also measured using the fluorescent glucose analogue (6NBDG) in differentiated stromal vascular cells (SVCs) from the fat pads (n = 11). Finally, dapagliflozin-induced adipocyte differentiation was assessed from the levels of fat droplets (AdipoRed staining) and of perilipin. SGLT2 was expressed in EAT. Dapagliflozin increased glucose uptake (20.95 ± 4.4 mg/dL vs. 12.97 ± 4.1 mg/dL; P < 0.001) and glucose transporter type 4 (2.09 ± 0.3 fold change; P < 0.01) in EAT. Moreover, dapagliflozin reduced the secretion levels of chemokines and benefited wound healing in endothelial cells (0.21 ± 0.05 vs. 0.38 ± 0.08 open wound; P < 0.05). Finally, chronic treatment with dapagliflozin improved the differentiation of SVC, confirmed by AdipoRed staining [539 ± 142 arbitrary units (a.u.) vs. 473 ± 136 a.u.; P < 0.01] and perilipin expression levels (121 ± 10 vs. 84 ± 11 a.u.).

CONCLUSIONS: Dapagliflozin increased glucose uptake, reduced the secretion of pro-inflammatory chemokines (with a beneficial effect on the healing of human coronary artery endothelial cells), and improved the differentiation of EAT cells. These results suggest a new protective pathway for this drug on EAT from patients with cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app