Add like
Add dislike
Add to saved papers

β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling.

Cardiovascular Research 2017 November 2
Aims: Ischemic heart disease is a leading cause of morbidity and mortality worldwide. Although timely restoration of coronary blood flow (reperfusion) is the most effective therapeutics of myocardial infarction, reperfusion causes further cardiac damage, i.e. ischemia-reperfusion (I/R) injury. β-arrestins (Arrbs) have been traditionally defined as negative regulators of G protein-coupled receptor (GPCR) signalling, but recent studies have shown that they are essential for G protein-independent, GPCR-mediated biased signalling. Several ligands have been reported to be cardioprotective via Arrbs dependent pathway. However, it is unclear whether Arrbs exert receptor-independent physiological or pathological functions in the heart. Here, we sought to determine whether and how Arrbs play a role in regulating cardiomyocyte viability and myocardial remodelling following I/R injury.

Methods and results: The expression of β-arrestin 2 (Arrb2), but not β-arrestin 1 (Arrb1), is upregulated in rat hearts subjected to I/R injury, or in cultured neonatal rat cardiomyocytes treated with hypoxia-reoxygenation (H/R) injury. Deficiency of Arrb2 in cultured neonatal rat cardiomyocytes alleviates H/R-induced cardiomyocyte death and Arrb2-/- mice are resistant to myocardial damage caused by I/R injury. In contrast, upregulation of Arrb2 triggers cardiomyocyte death and exaggerates I/R (or H/R)-induced detrimental effects. Mechanically, Arrb2 induces cardiomyocyte death by interacting with the p85 subunit of PI3K, and negatively regulating the formation of p85-PI3K/CaV3 survival complex, thus blocking activation of PI3K-Akt-GSK3β cell survival signalling pathway.

Conclusion: We define an upregulation of Arrb2 as a pathogenic factor in cardiac I/R injury, and also reveal a novel GPCR-independent mechanism of Arrb2-mediated cell death signalling in the heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app