Add like
Add dislike
Add to saved papers

Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse.

ACS Nano 2017 October 25
Imaging the brain with high integrity is of great importance to neuroscience and related applications. X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are two clinically used modalities for deep-penetration brain imaging. However, their spatial resolution is quite limited. Two-photon fluorescence microscopic (2PFM) imaging with its femtosecond (fs) excitation wavelength in the traditional near-infrared (NIR) region (700-1000 nm) is able to realize deep-tissue and high-resolution brain imaging. However, it requires craniotomy and cranial window or skull-thinning techniques due to photon scattering of the excitation light. Herein, based on a type of aggregation-induced emission luminogen (AIEgen) DCDPP-2TPA with a large three-photon absorption (3PA) cross section at 1550 nm and deep-red emission, we realized through-skull three-photon fluorescence microscopic (3PFM) imaging of mouse cerebral vasculature without craniotomy and skull-thinning. Reduced photon scattering of a 1550 nm fs excitation laser allowed it to effectively penetrate the skull and tightly focus onto DCDPP-2TPA nanoparticles (NPs) in the cerebral vasculature, generating bright three-photon fluorescence (3PF) signals. In vivo 3PF images of the cerebral vasculature at various vertical depths were obtained, and a vivid 3D reconstruction of the vascular architecture beneath the skull was built. As deep as 300 μm beneath the skull, small blood vessels of 2.4 μm could still be recognized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app