Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

The Rabbit Model of Accelerated Atherosclerosis: A Methodological Perspective of the Iliac Artery Balloon Injury.

Acute coronary syndrome resulting from coronary occlusion following atherosclerotic plaque development and rupture is the leading cause of death in the industrialized world. New Zealand White (NZW) rabbits are widely used as an animal model for the study of atherosclerosis. They develop spontaneous lesions when fed with atherogenic diet; however, this requires long time of 4 - 8 months. To further enhance and accelerate atherogenesis, a combination of atherogenic diet and mechanical endothelial injury is often employed. The presented procedure for inducing atherosclerotic plaques in rabbits uses a balloon catheter to disrupt the endothelium in the left iliac artery of NZW rabbits fed with atherogenic diet. Such mechanical damage caused by the balloon catheter induces a chain of inflammatory reactions initiating neointimal lipid accumulation in a time dependent fashion. Atherosclerotic plaque following balloon injury show neointimal thickening with extensive lipid infiltration, high smooth muscle cell content and presence of macrophage derived foam cells. This technique is simple, reproducible and produces plaque of controlled length within the iliac artery. The whole procedure is completed within 20 - 30 min. The procedure is safe with low mortality and also offers high success in obtaining substantial intimal lesions. The procedure of balloon catheter induced arterial injury results in atherosclerosis within two weeks. This model can be used for investigating the disease pathology, diagnostic imaging and to evaluate new therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app