Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Optical Coherence Tomography: Imaging Mouse Retinal Ganglion Cells In Vivo.

Structural changes in the retina are common manifestations of ophthalmic diseases. Optical coherence tomography (OCT) enables their identification in vivo-rapidly, repetitively, and at a high resolution. This protocol describes OCT imaging in the mouse retina as a powerful tool to study optic neuropathies (OPN). The OCT system is an interferometry-based, non-invasive alternative to common post mortem histological assays. It provides a fast and accurate assessment of retinal thickness, allowing the possibility to track changes, such as retinal thinning or thickening. We present the imaging process and analysis with the example of the Opa1delTTAG mouse line. Three types of scans are proposed, with two quantification methods: standard and homemade calipers. The latter is best for use on the peripapillary retina during radial scans; being more precise, is preferable for analyzing thinner structures. All approaches described here are designed for retinal ganglion cells (RGC) but are easily adaptable to other cell populations. In conclusion, OCT is efficient in mouse model phenotyping and has the potential to be used for the reliable evaluation of therapeutic interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app