Add like
Add dislike
Add to saved papers

Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction.

Analytical Chemistry 2017 November 8
Boron-doped diamond (BDD) has attracted much attention as a promising electrode material especially for electrochemical sensing systems, because it has excellent properties such as a wide potential window and low background current. It is known that the electrochemical properties of BDD electrodes are very sensitive to the surface termination such as to whether it is hydrogen- or oxygen-terminated. Pretreating BDD electrodes by cathodic reduction (CR) to hydrogenate the surface has been widely used to achieve high sensitivity. However, little is known about the effects of the CR treatment conditions on surface hydrogenation. In this Article, we report on a systematic study of CR treatments that can achieve effective surface hydrogenation. As a result, we found that the surface hydrogenation could be improved by applying a more negative potential in a lower pH solution. This is because hydrogen atoms generated from protons in the CR treatment contribute to the surface hydrogenation. After CR treatments, BDD surface could be hydrogenated not completely but sufficiently to achieve high sensitivity for electrochemical sensing. In addition, we confirmed that hydrogenation with high repeatability could be achieved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app