Add like
Add dislike
Add to saved papers

Human aortic endothelial cells respond to shear flow in well-plate microfluidic devices.

Although chronic progressive cardiovascular diseases such as atherosclerosis are often challenging to fully model in vitro, it has been shown that certain in vitro methods can effectively evaluate some aspects of disease progression. This has been demonstrated in in vitro and in vivo studies of endothelial cells that have illustrated the effects of nitric oxide (NO) production, filamentous actin (F-actin) formation, and cell and actin angle alignment on vascular function and homeostasis. Systems utilising shear flow have been established, in order to create a physiologically relevant environment for cells that require shear flow for homeostasis. Here, we investigated the use of a well-plate microfluidic system and associated devices (0-20dyn/cm²) to demonstrate applied shear effects on primary Human Aortic Endothelial Cells (HAECs). Changes in cell and actin alignment in the direction of flow, real-time production of NO and gross cell membrane shape changes in response to physiological shear flow were observed. These commercial systems have a range of potential applications, including within the consumer and pharmaceutical industries, thereby reducing the dependency on animal testing for regulatory safety assessments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app