Add like
Add dislike
Add to saved papers

Commuter exposure to fine and ultrafine particulate matter in Vienna.

Mass concentrations PM10 , PM2.5 , PM1 , particle number concentrations of ultrafine particles and lung deposited surface area were measured during commutes with a subway, tram, bus, car and bicycle in Vienna for the first time. Obtained data were examined for significant differences in personal exposure when using various transport modalities along similar routes. Mean PM2.5 and PM1 mass concentrations were significantly higher in the subway when compared to buses. Mean PM10 , PM2.5 and PM1 mass concentrations were significantly higher in the subway when compared to cars using low ventilation settings. Particle number concentrations of ultrafine particles were significantly higher in trams when compared to the subway and lung deposited surface area was significantly greater on bicycles when compared to the subway. After adjusting for different vehicle speeds, exposure to PM10 , PM2.5 and PM1 along the same route length was significantly higher in the subway when compared to cars while exposure to ultrafine particles and partly also lung deposited surface area was significantly higher in bus, tram and on bicycle when compared to the subway. Car and bus passengers could be better isolated from ambient fine particulate matter than passengers in the subway, where a lot of ventilation occurs through open windows and larger doors. Tram passengers and cyclists might be exposed to increased amounts of ultrafine particles and larger lung deposited surface area due to a closer proximity to road traffic. Comparing cumulative exposure along the same route length leads to different results and favors faster traffic modes, such as the subway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app