Add like
Add dislike
Add to saved papers

An eQTL variant of ZXDC is associated with IFN-γ production following Mycobacterium tuberculosis antigen-specific stimulation.

Scientific Reports 2017 October 10
There is a large inter-individual variability in the response to Mycobacterium tuberculosis infection. In previous linkage analyses, we identified a major locus on chromosome region 8q controlling IFN-γ production after stimulation with live BCG (Bacillus Calmette-Guérin), and a second locus on chromosome region 3q affecting IFN-γ production triggered by the 6-kDa early secretory antigen target (ESAT-6), taking into account the IFN-γ production induced by BCG (IFNγ-ESAT6BCG). High-density genotyping and imputation identified ~100,000 variants within each linkage region, which we tested for association with the corresponding IFN-γ phenotype in families from a tuberculosis household contact study in France. Significant associations were replicated in a South African familial sample. The most convincing association observed was that between the IFNγ-ESAT6BCG phenotype and rs9828868 on chromosome 3q (p = 9.8 × 10(-6) in the French sample). This variant made a significant contribution to the linkage signal (p < 0.001), and a trend towards the same association was observed in the South African sample. This variant was reported to be an eQTL of the ZXDC gene, biologically linked to monocyte IL-12 production through CCL2/MCP1. The identification of rs9828868 as a genetic driver of IFNγ production in response to mycobacterial antigens provides new insights into human anti-tuberculosis immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app