JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spider acetylcholine binding proteins: An alternative model to study the interaction between insect nAChRs and neonicotinoids.

Acetylcholine binding proteins (AChBPs) are homologs of extracellular domains of nicotinic acetylcholine receptors (nAChRs) and serve as models for studies on nAChRs. Particularly, studies on invertebrate nAChRs that are limited due to difficulties in their heterologous expression have benefitted from the discovery of AChBPs. Thus far, AChBPs have been characterized only in aquatic mollusks, which have shown low sensitivity to neonicotinoids, the insecticides targeting insect nAChRs. However, AChBPs were also found in spiders based on the sequence and tissue expression analysis. Here, we report five AChBP subunits in Pardosa pseudoannulata, a predator enemy against rice insect pests. Spider AChBP subunits shared higher sequence similarities with nAChR subunits of both insects and mammals compared with mollusk AChBP subunits. The AChBP1 subunit of P. pseudoannulata (Pp-AChBP) was then expressed in Sf9 cells. The Ls-AChBP from Lymnaea stagnalis was also expressed for comparison. In both AChBPs, one ligand site per subunit was present at each interface between two adjacent subunits. Neonicotinoids had higher affinities (7.9-18.4 times based on Kd or Ki values) for Pp-AChBP than for Ls-AChBP, although epibatidine and α-bungarotoxin showed higher affinities for Ls-AChBP. These results indicate that spider AChBP could be used as an alternative model to study the interaction between insect nAChRs and neonicotinoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app