Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Kinase-independent role of nuclear RIPK1 in regulating parthanatos through physical interaction with PARP1 upon oxidative stress.

Regulated necrosis occurs in various pathophysiological conditions under oxidative stress. Here, we report that receptor-interacting protein kinase 1 (RIPK1), a key player in one type of regulated necrosis (necroptosis), also participates in another type of poly (ADP-ribose) polymerase 1 (PARP1)-dependent regulated necrosis (parthanatos). Various biological signatures of parthanatos were significantly attenuated in Ripk1-/- mouse embryonic fibroblasts, including PARylation, nuclear translocation of apoptosis-inducing factor, and PARP1-dependent cell death under H2 O2 exposure. Hence, we investigated whether RIPK1 regulates the activity of PARP1. RIPK1 activated PARP1 via an interaction with the catalytic domain of PARP1 in the nucleus. Of note, both wild type and kinase-dead mutant RIPK1 induced PARP1 activation and led to PARP1-mediated cell death upon H2 O2 insult, demonstrating the kinase-independent regulation of RIPK1 in PARP1 activation. Collectively, our results demonstrate the existence of a kinase-independent role of nuclear RIPK1 in the regulation of PARP1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app