Add like
Add dislike
Add to saved papers

Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics.

Discontinuation of contact lens wear as a result of ocular dryness and discomfort is extremely common; as many as 26% of contact lens wearers discontinue use within the first year. While patients are generally satisfied with conventional hydrogel lenses, improving on-eye comfort continues to remain a goal. Surface modification with a biomimetic, ocular friendly hydrophilic layer of a wetting agent is hypothesized to improve the interfacial interactions of the contact lens with the ocular surface. In this work, the synthesis and characterization of poly(2-hydroxyethyl methacrylate) surfaces grafted with a hydrophilic layer of hyaluronic acid are described. The immobilization reaction involved the covalent attachment of thiolated hyaluronic acid (20 kDa) on acrylated poly(2-hydroxyethyl methacrylate) via nucleophile-initiated Michael addition thiol-ene "click" chemistry. The surface chemistry of the modified surfaces was analyzed by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy. The appearance of N (1s) and S (2p) peaks on the low resolution X-ray photoelectron spectroscopy spectra confirmed successful immobilization of hyaluronic acid. Grafting hyaluronic acid to the poly(2-hydroxyethyl methacrylate) surfaces decreased the contact angle, the dehydration rate, and the amount of nonspecific sorption of lysozyme and albumin in comparison to pristine hydrogel materials, suggesting the development of more wettable surfaces with improved water-retentive and antifouling properties, while maintaining optical transparency (>92%). In vitro testing also showed excellent viability of human corneal epithelial cells with the hyaluronic acid-grafted poly(2-hydroxyethyl methacrylate) surfaces. Hence, surface modification with hyaluronic acid via thiol-ene "click" chemistry could be useful in improving contact lens surface properties, potentially alleviating symptoms of contact lens related dryness and discomfort during wear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app