Add like
Add dislike
Add to saved papers

Multiple mechanisms of dimethyl fumarate in amyloid β-induced neurotoxicity in human neuronal cells.

Alzheimer disease (AD) is characterized by a complex heterogeneity of pathological changes, and any therapeutic approach categorically requires a multi-targeted way. It has been demonstrated that together with the hallmarks of the disease such as neurofibrillary tangles and senile plaques, oxidative and inflammatory stress covered an important role. Dimethyl fumarate (DMF) is an orally bioavailable methyl ester of fumaric acid and activator of Nrf2 with potential neuroprotective and immunomodulating activities. Therefore, the aim of the present work was to evaluate the potential beneficial effects of DMF, compared with its active metabolite monomethyl fumarate (MMF) (both at 30 μM) in an in vitro Alzheimer's model using SH-SY5Y human neuroblastoma cell lines stimulated with amyloid-beta (Aβ). Moreover, the effect of DMF, compared with MMF, was evaluate by an ex vivo model using organotypic hippocampal slice cultures stimulated with Aβ1-42 (1 μg/ml), to better understand its action in a pathological setting. In both models, DMF pre-treatment (30 μM) preserved cellular viability from Aβ stimulation, reducing tau hyper-phosphorylation, much more efficiently then MMF (30 μM). Moreover, DMF was able to induce an activation of manganese superoxide dismutase (MnSOD) and heme-oxygenase-1 (HO-1), decreasing the severity of oxidative stress. Our results showed important multi-protective effects of DMF pre-treatment from Aβ stimulation both in in vitro and ex vivo models, highlighting an Nrf2/NF-κB-dependent mechanism, which could provide a valuable support to the therapies for neurodegenerative diseases today.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app