Add like
Add dislike
Add to saved papers

Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.

Molecular BioSystems 2017 November 22
Cysteine S-sulfenylation is a major type of posttranslational modification that contributes to protein structure and function regulation in many cellular processes. Experimental identification of S-sulfenylation sites is challenging, due to the low abundance of proteins and the inefficient experimental methods. Computational identification of S-sulfenylation sites is an alternative strategy to annotate the S-sulfenylated proteome. In this study, a novel computational predictor SulCysSite was developed for accurate prediction of S-sulfenylation sites based on multiple sequence features, including amino acid index properties, binary amino acid codes, position specific scoring matrix, and compositions of profile-based amino acids. To learn the prediction model of SulCysSite, a random forest classifier was applied. The final SulCysSite achieved an AUC value of 0.819 in a 10-fold cross-validation test. It also exhibited higher performance than other existing computational predictors. In addition, the hidden and complex mechanisms were extracted from the predictive model of SulCysSite to investigate the understandable rules (i.e. feature combination) of S-sulfenylation sites. The SulCysSite is a useful computational resource for prediction of S-sulfenylation sites. The online interface and datasets are publicly available at .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app