Add like
Add dislike
Add to saved papers

Isoform separation by a mixed-mode resin, TOYOPEARL MX-Trp-650M.

TOYOPEARL particles are cross-linked hydroxylated methacrylic polymers available in different pore and particle sizes. They are conjugated with different ligands to generate ion-exchange, hydrophobic interaction and affinity resins. They have excellent physical and chemical properties. A mixed-mode resin, TOYOPEARL MX-Trp-650M, is made of this particle with tryptophan conjugated via N-terminal amino group and hence has both hydrophobic/aromatic side chain and carboxyl group. In this review, I will summarize the properties of the TOYOPEARL particles and MX-Trp-650M resin and application of this resin for purification of proteins and in some detail the separation of disulfide (SS)-scrambled oligomers of insulin-like growth factor-1 (IGF-1). For this particular application, the intact IGF-1 was used to examine binding and elution conditions of TOYOSCREEN MX-Trp-650M column. Strong binding was obtained at pH 4.0, at which arginine, but not NaCl, resulted in elution. Both NaCl and arginine resulted in elution at pH 6.5. In addition, a pH gradient from 4.0 to 8.5 was effective. When applied to SS-scrambled IGF-1 oligomers, both pH and arginine gradient exhibited an efficient separation of the oligomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app