JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.

SIGNIFICANCE: The overabundance of reactive oxygen species (ROS) and antioxidants in cancer cells represents a challenge for therapeutic intervention, while also providing an opportunity for the development of new strategies to improve clinical therapeutic outcomes. Recent Advances: Nanotechnology has advanced tremendously in recent decades and now offers many potential opportunities to leverage altered redox status to improve conventional therapies. Highly tunable nanoparticle delivery systems have shown great promise for improving the following: (i) chemotherapy via selective redox-sensitive drug release in tumor cells and limited systemic toxicity; (ii) photodynamic therapy via enhancing photoactivation and/or ROS production; and (iii) radiation therapy via enhancing ROS production. Great progress has also been made regarding novel nanoparticle-mediated therapies to enhance tumor cell death via ROS generation and angiogenic inhibition.

CRITICAL ISSUES: Current anticancer therapies are limited by systemic side effects and resistance. The inherent heterogeneity and hypoxic status of solid tumors impose significant barriers for even the most rationally designed nanoparticle systems. In addition, few comprehensive biodistribution and toxicity evaluations exist, and clinical efficacy remains to be established. The practicality of many nanoparticle systems is compromised by variable in vivo responses and scale-up difficulties due to complicated chemistry and prohibitive manufacturing costs.

FUTURE DIRECTIONS: As nanoparticle design continues to advance, improved therapeutic efficacy will likely follow. Actively targeted systems may improve distribution specificity but more positive clinical demonstrations are needed. Further investigation into systemic and intracellular distribution as well as toxicity will improve understanding of how these nanoparticle systems can be applied to improve existing therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app