Add like
Add dislike
Add to saved papers

Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium-Sulfur Batteries.

Lithium-sulfur battery represents a promising class of energy storage technology owing to its high theoretical energy density and low cost. However, the insulating nature, shuttling of soluble polysulfides and volumetric expansion of sulfur electrodes seriously give rise to the rapid capacity fading and low utilization. In this work, these issues are significantly alleviated by both physically and chemically restricting sulfur species in fluorinated porous triazine-based frameworks (FCTF-S). One-step trimerization of perfluorinated aromatic nitrile monomers with elemental sulfur allows the simultaneous formation of fluorinated triazine-based frameworks, covalent attachment of sulfur and its homogeneous distribution within the pores. The incorporation of electronegative fluorine in frameworks provides a strong anchoring effect to suppress the dissolution and accelerate the conversion of polysulfides. Together with covalent chemical binding and physical nanopore-confinement effects, the FCTF-S demonstrates superior electrochemical performances, as compared to those of the sulfur-rich covalent triazine-based framework without fluorine (CTF-S) and porous carbon delivering only physical confinement. Our approach demonstrates the potential of regulating lithium-sulfur battery performances at a molecular scale promoted by the porous organic polymers with a flexible design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app