Add like
Add dislike
Add to saved papers

Molecular dynamics investigation of stereoselective inhibition mechanism of HIF-2α/ARNT heterodimer.

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors related with the onset and progression of solid tumors. Studies demonstrated a class of tetrazole containing chiral inhibitors could stereoselectively disrupt the HIF-2 dimerization and reduce the target gene expression. However, the dynamical features and structural motifs of the HIF-2 heterodimer caused by the binding of enantiomers have not been rationalized at the atomistic level. In this work, molecular dynamics (MD) simulations combined with adaptive steered MD (ASMD) simulations were used to investigate stereoselective interrupting mechanism of HIF-2. Our results decipher that the binding of ligand A (S, R)-24 begets the significant conformation changes of β-sheets and interrupts the HIF-2α/ARNT heterodimerization, which may be attributed to the disruption of the hydrogen bond and salt bridge interactions formed by the 4 foremost residues (Asp240, Arg247, Glu362, and Arg366) and the destruction of hydrophobic interactions on the binding interface. By contrast, the binding of ligand B (R, S)-24 does not disrupt protein dimerization and causes the motion of Fα helix in HIF-2α PAS-B domain to further change the major tunnel for ligand ingress and engress. The present work provides important molecular-level insight into the effect of the binding enantiomers on HIF-2 heterodimerization and bridges the gap between theory and the experimental results, which may conduce to develop highly potent antagonists for intervening the HIF-2-driven tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app