Add like
Add dislike
Add to saved papers

Organic horizon and mineral soil mercury along three clear-cut forest chronosequences across the northeastern USA.

Mercury (Hg) is a globally distributed pollutant trace metal that has been increasing in terrestrial environments due to rising anthropogenic emissions. Vegetation plays an important role in Hg sequestration in forested environments, but increasing tree removal for biofuels and wood products may affect this process. The long-term effect of clear-cutting on forest soil Hg remains uncertain, since most studies are limited to measuring changes for < 10 years following a single harvest event. The chronosequence approach, which substitutes space for time using forest stands of different ages since clear-cutting, allows for investigation of processes occurring over decades to centuries. Here, we utilized three clear-cut forest soil chronosequences across the northeastern USA to understand Hg accumulation and retention over several decades. Total Hg concentrations and pools were quantified for five soil depth increments along three chronosequences. Our results showed Hg concentrations and pools decreased in the initial 20 years following clear-cutting. Mineral soil Hg pools decreased 21-53% (7-14 mg m-2 ) between 1-5-year-old stands and 15-25-year-old stands but mineral soil Hg pools recovered in 55-140-year-old stands to similar values as measured in 1-5-year-old stands. Our study is one of the first to demonstrate a decrease and recovery in Hg pool size. These changes in Hg did not correspond with changes in bulk density, soil C, or pH. We utilized a simple two-box model to determine how different Hg fluxes affected organic and mineral soil horizon Hg pools. Our simple model suggests that changes in litterfall and volatilization rates could have caused the observed changes in organic horizon Hg pools. However, only increases in leaching could reproduce observed decreases to mineral soil Hg pools. Further studies are needed to determine the mechanism of Hg loss from forest soils following clear-cutting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app