Add like
Add dislike
Add to saved papers

Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies.

Algal Research 2017 September
Microalgae are considered to be an important and sustainable alternative to fish oil as a source for the polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Due to their health benefits, there is an increasing interest in the commercial application of these fatty acids (FA) to health and dietary products, and to aquaculture feeds. However, FA from microalgae are still expensive to produce compared to fish or plant oils. With only a few microalgal strains being cultivated on a large scale for commercial PUFA production, prospecting for new, robust and fast-growing strains with increased PUFA content is essential in order to reduce production costs. Microalgae from northern high latitudes, exposed to cold temperatures, may be especially promising candidates as previous studies have shown increasing unsaturation of FA in response to decreasing growth temperatures in different microalgae, most likely to maintain membrane fluidity and function. We have designed a screening pipeline, targeting a focused search and selection for marine microalgal strains from extreme North Atlantic locations with high robustness and biomass production, and increased levels of EPA and DHA. The pipeline includes a rational sampling plan, isolation and cultivation of clonal strains, followed by a batch growth experiment designed to obtain information on robustness, growth characteristics, and the FA content of selected isolates during both nutrient replete exponential cultivation and nutrient limited stationary cultivation. A number of clonal cultures (N = 149) have been established, and twenty of these strains have been screened for growth and FA content and composition. Among those strains, three showed growth rates ≥ 0.7 d(- 1) at temperatures of 15 °C or below, and high amounts of EPA (> 3% DW), suggesting their potential as candidates for large scale production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app