Add like
Add dislike
Add to saved papers

An Exploration Into Short-Interval Maintenance of Adult Hemispheric Cortical Thickness at an Individual Brain Level.

Adult cerebral cortical structure is thought to be statically maintained over short intervals. This view is based on group average findings but has never been studied at the individual level. This issue was examined with an unconventional longitudinal magnetic resonance imaging design which measured hemispheric mean cortical thickness of an adult man repeatedly at week intervals over 6 months. These measures were compared with measurement error estimates to test the current prediction that thickness measures would be statically maintained within measurement error variation. The results did not support this prediction. Thickness underwent incremental and decremental fluctuations which ranged up to 0.12 mm and 5.83% over week and multiweek intervals and which differed from measurement error variation. These exploratory analyses suggest a working hypothesis that short-interval cortical structural maintenance in an individual can involve fluctuations in thickness. If confirmed, this hypothesis has potential implications for cortical maintenance mechanisms and precision medicine approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app