Add like
Add dislike
Add to saved papers

System map for the ionic liquid stationary phase tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide for gas chromatography.

The solvation parameter model is used to construct a system map for the retention of volatile organic compounds on the ionic liquid stationary phase tri(tripropypphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide (SLB-IL76) over the temperature range 80-240°C. The SLB-IL76 stationary phase is moderately cohesive and strongly dipolar/polarizable and hydrogen-bond basic but only a weak hydrogen-bond acid. Electron lone pair interactions are weak and make only a minor contribution to the retention mechanism. The separation properties of SLB-IL76 highlight the difficulty of designing new stationary phases from ion structures as the presence of amide groups in the cation don't seem to contribute significantly to the hydrogen-bond acidity of SLB-IL76. The separation properties of SLB-IL76 are closest to the bis(polycyanopropyl)siloxane stationary phases with a high percentage of bis(cyanopropyl)siloxane monomer and could be used in method development when a stationary phase with similar gross retention characteristics but different selectivity is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app