Add like
Add dislike
Add to saved papers

Detailed muscular structure and neural control anatomy of the levator ani muscle: a study based on female human fetuses.

BACKGROUND: Injury to the levator ani muscle or pelvic nerves during pregnancy and vaginal delivery is responsible for pelvic floor dysfunction.

OBJECTIVE: We sought to demonstrate the presence of smooth muscular cell areas within the levator ani muscle and describe their localization and innervation.

STUDY DESIGN: Five female human fetuses were studied after approval from the French Biomedicine Agency. Specimens were serially sectioned and stained by Masson trichrome and immunostained for striated and smooth muscle, as well as for somatic, adrenergic, cholinergic, and nitriergic nerve fibers. Slides were digitized for 3-dimensional reconstruction. One fetus was reserved for electron microscopy. We explored the structure and innervation of the levator ani muscle.

RESULTS: Smooth muscular cell beams were connected externally to the anococcygeal raphe and the levator ani muscle and with the longitudinal anal muscle sphincter. The caudalmost part of the pubovaginal muscle was found to bulge between the rectum and the vagina. This bulging was a smooth muscular interface between the levator ani muscle and the longitudinal anal muscle sphincter. The medial (visceral) part of the levator ani muscle contained smooth muscle cells, in relation to the autonomic nerve fibers of the inferior hypogastric plexus. The lateral (parietal) part of the levator ani muscle contained striated muscle cells only and was innervated by the somatic nerve fibers of levator ani and pudendal nerves. The presence of smooth muscle cells within the medial part of the levator ani muscle was confirmed under electron microscopy in 1 fetus.

CONCLUSION: We characterized the muscular structure and neural control of the levator ani muscle. The muscle consists of a medial part containing smooth muscle cells under autonomic nerve influence and a lateral part containing striated muscle cells under somatic nerve control. These findings could result in new postpartum rehabilitation techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app