JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Photo-CIDNP Reveals Different Protonation Sites Depending on the Primary Step of the Photoinduced Electron-/Proton-Transfer Process with Ru(II) Polyazaaromatic Complexes.

The excited-state quenching of [Ru(TAP)2 (HAT)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, HAT= 1,4,5,8,9,12-hexaazatriphenylene) by hydroquinone (H2 Q), N-acetyl-tyrosine (N-Ac-Tyr) or guanosine-5'-monophosphate (GMP) was investigated at various pH values. The quenching occurs via electron/proton transfer, as evidenced by transient absorption spectroscopy and confirmed by 1 H photochemically induced dynamic nuclear polarization (photo-CIDNP). Reductive quenching also occurs in strongly acidic solution despite a much shorter lifetime of the protonated excited-state complex. Photo-CIDNP revealed a different mechanism at low pH, involving protonation before electron transfer and yielding a distinct protonated monoreduced complex. The experimental photo-CIDNP patterns are consistent with density functional theory calculations. This work highlights the power of 1 H photo-CIDNP for characterizing, at the atomic level, transient species involved in electron-transfer processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app