Add like
Add dislike
Add to saved papers

Synthesis of magnetic orderly mesoporous α-Fe 2 O 3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal.

A calcination time regulation method has been unprecedentedly used to adjust the orderly meso-structure of novel α-Fe2 O3 nanoclusters derived from MIL-100(Fe) (MIL: Materials of Institute Lavoisier). The as-synthesized magnetic orderly mesoporous α-Fe2 O3 nanoclusters were characterized by XRD, SEM, TEM, TGA, N2 adsorption-desorption isotherms, VSM, Zeta potential, FTIR and XPS. The 6h calcinated α-Fe2 O3 nanocluster exhibited the optimal properties, including the high specific surface area and the orderly mesoporous properties, which facilitate the arsenic(III,V) adsorption capacity. The maximum adsorption capacities of As(III) and As(V) were 109.89 and 181.82mgg-1 , respectively, and adsorption equilibrium can be reached just within 30min. The kinetics intra-particle diffusion model and adsorption isotherms reveal that the adsorption rate is controlled by pore diffusion and the adsorption process belongs to Langmuir monolayer adsorption. These results indicate that the orderly mesoporous structure of α-Fe2 O3 nanoclusters plays a key role in rapid and efficient adsorption for arsenic(III,V). Meanwhile, adsorption mechanism verifies that arsenic can react with active sites (Fe-OH) to form complexes by Fe-O-As bond. Moreover, α-Fe2 O3 nanocluster can be separated easily due to its excellent magnetism. Above all, the magnetism orderly mesoporous α-Fe2 O3 nanocluster is a promising adsorbent for emergent treatment of arsenic in practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app