Add like
Add dislike
Add to saved papers

Differentiation of hypointense nodules on gadoxetic acid-enhanced hepatobiliary-phase MRI using T 2 enhanced spin-echo imaging with the time-reversed gradient echo sequence: An initial experience.

PURPOSE: To optimize the flip angle (FA) of the T2 enhanced spin-echo imaging using the time reversed gradient echo (T2FFE) and evaluate its utility for differentiating hypointensity nodules in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced (Gd-EOB) MRI.

MATERIALS AND METHODS: First, FA optimization of the T2FFE in the HBP was investigated by comparing signal-to-noise ratio (SNR) among different FAs using phantoms. The liver-to-muscle contrast ratios (CRLiver-Muscle ) and image quality among three FAs (20°, 50° and 80°) were compared using images of 10 patients. Next, the utility of the T2FFE with an optimized FA for differentiating hypointensity nodules in the HBP was assessed by comparing the lesion-to-liver contrast ratio (CRLesion-Liver ) among cysts, hemangiomas, hepatocellular carcinomas, and metastatic tumors in 32 patients.

RESULTS: SNR increased as FA increased, but leveled off at FAs of 50° and greater. The FA of 50° showed significantly better image quality scores than that of 80° (p<0.05). After employing an FA of 50°, the CRLesion-Liver value indicated that the T2FFE depicted benign lesions as hyperintense and most malignant lesions as hypointense in relation with the liver parenchyma (p<0.05).

CONCLUSION: The T2FFE in the HBP of Gd-EOB-MRI is useful for differentiating benign and malignant liver lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app