JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Use of a Virus Gene Silencing Vector for Maize Functional Genomics Research.

Virus-induced gene silencing (VIGS) is a genetic technology that exploits the RNA-mediated defense against virus. The method has great potential for plant reverse genetics as it could knock down gene expression in a rapid way, which is triggered by a replicating viral genome engineered to carry a fragment of host gene to be silenced. A number of efficient VIGS vectors are available for dicots, such as for model plant Nicotiana benthamiana; however, only a few of VIGS vectors for monocotyledonous cereal crops. Here, we describe the method for the use of a newly developed VIGS vector based on a maize-infecting Cucumber mosaic virus (CMV) strain ZMBJ-CMV for maize. The RNA2 of ZMBJ-CMV was modified as a vector pCMV201-2bN81 having multiple cloning sites for the insert of 100-300 bp fragment of target gene. Using a method of vascular puncture inoculation of maize seeds with crude sap prepared from Agrobacterium-infiltrated N. benthamiana leaves, silencing of target genes could be obtained in 4 weeks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app