Add like
Add dislike
Add to saved papers

High-fat diet enhances hepatic ischemia-reperfusion injury-induced apoptosis: Role of glucocorticoid receptors.

Life Sciences 2017 December 16
AIMS: The present study was designed to evaluate whether and how glucocorticoids can affect obesity-regulated hepatic ischemia-reperfusion (I/R) injury.

MAIN METHODS: To this end, we first examined whether hydrocortisone (HCT) has protective effects on liver damage induced by hepatic I/R injury in mice receiving high fat diet treatment. We then explored the role of GR expression and phosphorylation in the anti-apoptotic effects of hydrocortisone upon hepatic I/R injury.

KEY FINDINGS: We found that HCT reduced hepatic necrosis and inflammatory infiltration after hepatic I/R injury in mice that received high fat diet treatment. However, HCT lost the anti-apoptotic effects in high-fat diet treated mice. This phenomenon was associated with increased GRβ expression, decreased basal levels of GR phosphorylation at Ser220 and lack of HCT-induced GR phosphorylation at Ser220 in high-fat diet treated mice. Additionally, basal levels of ERK phosphorylation was increased in high-fat diet treated mice, and I/R injury was associated with robustly increased ERK phosphorylation in high-fat diet treated mice, compared to normal diet treated mice. Furthermore, we demonstrated that high fat diet treated ERK1-/- mice exhibited robustly reduced apoptosis rate at 24h after reperfusion, compared to high fat diet treated wild-type mice. Importantly, there was a decreased level of GRβ after high fat diet treatment in ERK1-/- mice.

SIGNIFICANCE: These results together suggested that ERK1 phosphorylation plays a critical role in regulating GRβ expression and HCT-induce GR phosphorylation at Ser220, which is critical for the anti-apoptotic effects HCT on hepatic I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app