JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Aescin Incorporation and Nanodomain Formation in DMPC Model Membranes.

The saponin aescin from the horse chestnut tree is a natural surfactant well-known to self-assemble as oriented-aggregates at fluid interfaces. Using model membranes in the form of lipid vesicles and Langmuir monolayers, we study the mixing properties of aescin with the phase-segregating phospholipid 1,2-dimyristoyl-sn-glycero-phosphocholine (DMPC). The binary membranes are experimentally studied on different length scales ranging from the lipid headgroup area to the macroscopic scale using small-angle X-ray scattering (SAXS), photon correlation spectroscopy (PCS), and differential scanning calorimetry (DSC) with binary bilayer vesicles and Langmuir tensiometry (LT) with lipid monolayers spread on the surface of aescin solutions. The binary interaction was found to strongly depend on aescin concentration in two well differentiated concentration regimes. Below 7 mol %, the results reveal phase segregation of nanometer-sized aescin-rich domains in an aescin-poor continuous bilayer. Above this concentration, aescin-aescin interactions dominate, which inhibit vesicle formation but lead to the formation of new membrane aggregates of smaller sizes. From LT studies in monolayers, the interaction of aescin with DMPC was shown to be stronger in the condensed phase than in the liquid expanded phase. Furthermore, a destructuring role was revealed for aescin on phospholipid membranes, similar to the fluidizing effect of cholesterol and nonsteroidal anti-inflammatory drugs (NSAIDs) on lipid bilayers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app