Add like
Add dislike
Add to saved papers

Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia.

Chronic intermittent hypoxia (CIH) during repetitive airflow cessations may cause endothelial dysfunction. Tanshinone IIA (Tan IIA) has been used to treat various circulatory disturbance-related diseases because of its pharmacological actions, including vasodilation. However, the mechanism of the effect of its vasodilation is not well established. The objective of this study was to explore the effect of Tan IIA in endothelium-dependent contracting factors and endothelin receptors in aortic endothelial dysfunction in CIH rats. Aortas of rats were retrieved for use in in vitro experiments (isometric force measurement), histological analysis, immunohistochemistry, and Western blotting. Tan IIA treatment increased the expression of endothelial nitric oxide synthase (eNOS) and formation of nitric oxide (NO), inhibited the production of endothelin-1 (ET-1), down-regulated ETA receptor expression, and up-regulated ETB receptor expression. In conclusion, Tan IIA protects endothelial function by inhibiting strain-induced ET-1 expression, decreasing ETA receptors, increasing ETB receptors, increasing the formation of NO, and up-regulating eNOS in CIH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app