JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Airway injury in an in vitro human epithelium-fibroblast model of diacetyl vapor exposure: diacetyl-induced basal/suprabasal spongiosis.

Inhalation exposure to diacetyl (DA) is associated with obliterative bronchiolitis (OB) in workers and induces OB-like fibrotic airway lesions in rats. The pathogenesis of OB is poorly understood in part due to complex interactions between airway epithelial, mesenchymal and blood-derived inflammatory cells. DA-induced airway toxicity in the absence of recruited-inflammatory/immune cells was characterized using an air-liquid interface (ALI) model consisting of human airway epithelium with (Epi/FT) and without (Epi) a mesenchymal component. ALI cultures were exposed to 25 mM DA-derived vapors (using vapor cups) for 1 h on day 0, 2 and 4. In some experiments, the tissues were exposed to 2,3-hexanedione (Hex) which is structurally-similar, but much less fibrogenic than DA. Lactate dehydrogenase activity and day 6 histopathologic changes associated with epithelial injury, including basal/suprabasal spongiosis, were increased following exposure of Epi/FT tissues to DA but not control or Hex vapors. IL-1a, IL-6, IL-8, sIL-1Ra, TGFa, MCP-3 and TNFa proteins were increased following DA exposure of Epi/FT tissues; only IL-1a, IL-8, sIL-1Ra and TGFa were increased following exposure of Epi tissues. MMP-1, MMP-3 and TIMP-1 proteins were increased following DA exposure of Epi/FT tissues; whereas MMP-2, MMP-7 and TIMP-2 were decreased, and production was largely dependent upon the presence of sub-epithelial stromal matrix/fibroblasts. Hex-induced protein changes were minimal. This in vitro study demonstrated that exposure of human airways to DA vapors induced epithelial injury (with the histopathologic feature of basal/suprabasal spongiosis) and increased release of pro-inflammatory and pro-fibrotic cytokines/chemokines as well as MMPs/TIMPs in the absence of recruited-inflammatory cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app