Add like
Add dislike
Add to saved papers

Dynamics of the crystal structure of tin-based type-I clathrates with different degrees of disorder in their cationic frameworks.

The temperature dependencies of heat capacity, CP (T), and cubic unit cell parameter, a(T), were experimentally obtained in the range of 2-300 K for the compounds Sn24 P19.2 I8 , Sn20 Zn4 P20.8 I8 , and Sn17 Zn7 P22 I8 , which belong to a family of type-I clathrates. The experimental data were analyzed in the frames of the Debye-Einstein approximation, further accounting for the contributions of positional disorder in the clathrate frameworks as well as those of defect modes arising from the distribution of guest atoms over unequal in energy but close in space positions inside the framework cages. By fitting the experimental data, the Debye and Einstein characteristic temperatures describing the dynamics of the framework and guest atoms, respectively, were obtained. Their analysis revealed peculiar dependencies of the characteristic temperatures upon the number of substituted zinc atoms and the concentration of vacancies in the framework, which are discussed in this paper.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app