Add like
Add dislike
Add to saved papers

Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.

PURPOSE: Prospective motion correction reduces artifacts in MRI by correcting for subject motion in real time, but techniques are limited for multishot 2-dimensional (2D) sequences. This study addresses this limitation by using 2D echo-planar imaging (EPI) slice navigator acquisitions together with a multislice-to-volume image registration.

METHODS: The 2D-EPI navigators were integrated into 2D imaging sequences to allow a rapid, real-time motion correction based on the registration of three navigator slices to a reference volume. A dedicated slice-iteration scheme was used to limit mutual spin-saturation effects between navigator and image data. The method was evaluated using T2 -weighted spin echo and multishot rapid acquisition with relaxation enhancement (RARE) sequences, and its motion-correction capabilities were compared with those of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER). Validation was performed in vivo using a well-defined motion protocol.

RESULTS: Data acquired during subject motion showed residual motion parameters within ±0.5 mm and ±0.5°, and demonstrated a substantial improvement in image quality compared with uncorrected scans. In a comparison to PROPELLER, the proposed technique preserved a higher level of anatomical detail in the presence of subject motion.

CONCLUSIONS: EPI-navigator-based prospective motion correction using multislice-to-volume image registration can substantially reduce image artifacts, while minimizing spin-saturation effects. The method can be adapted for use in other 2D MRI sequences and promises to improve image quality in routine clinical examinations. Magn Reson Med 78:2127-2135, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app