Add like
Add dislike
Add to saved papers

Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na + -translocating rhodopsin by a single amino acid substitution.

Light-driven H+ , Cl- and Na+ rhodopsin pumps all use a covalently bound retinal molecule to capture light energy. Some H+ -pumping rhodopsins (xanthorhodopsins; XRs) additionally contain a carotenoid antenna for light absorption. Comparison of the available primary and tertiary structures of rhodopsins pinpointed a single Thr residue (Thr216) that presumably prevents carotenoid binding to Na+ -pumping rhodopsins (NaRs). We replaced this residue in Dokdonia sp. PRO95 NaR with Gly, which is found in the corresponding position in XRs, and produced a variant rhodopsin in a ketocarotenoid-synthesising Escherichia coli strain. Unlike wild-type NaR, the isolated variant protein contained the tightly bound carotenoids canthaxanthin and echinenone. These carotenoids were visible in the absorption, circular dichroism and fluorescence excitation spectra of the Thr216Gly-substituted NaR, which indicates their function as a light-harvesting antenna. The amino acid substitution and the bound carotenoids did not affect the NaR photocycle. Our findings suggest that the antenna function was recently lost during NaR evolution but can be easily restored by site-directed mutagenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app